
--Create a database to use for this example
IF (SELECT DB_ID('HoggysBlog')) IS NULL
CREATE DATABASE HoggysBlog
GO

USE HoggysBlog
GO

--Create a table of consecutive numbers
IF (SELECT OBJECT_ID('Number')) IS NULL
 BEGIN
 CREATE TABLE Number
 (
 n INT
)

 INSERT INTO Number (n)
 SELECT ROW_NUMBER() OVER (ORDER BY CURRENT_TIMESTAMP) rn
 FROM sys.trace_event_bindings r1, sys.trace_event_bindings
 END

--Create the table used for this example
IF (SELECT OBJECT_ID('PartitionPuzzle')) IS NULL
 BEGIN
 CREATE TABLE PartitionPuzzle
 (
 Puzzle_ID INT IDENTITY (1,1),
 Puzzle_Year INT NOT NULL,

 CONSTRAINT [PK_Puzzle] PRIMARY KEY NONCLUSTERED
 (
 Puzzle_Id ASC
)
)

 CREATE CLUSTERED INDEX CIX_Puzzle ON [PartitionPuzzle]
 (
 [Puzzle_Year] ASC
)
 END

--Insert some rows into the table
INSERT PartitionPuzzle (Puzzle_Year)
SELECT 1666
FROM Number
WHERE n <= 100

INSERT PartitionPuzzle (Puzzle_Year)
SELECT 1812
FROM Number
WHERE n <= 100

--In first query session run this
BEGIN TRANSACTION
DELETE FROM PartitionPuzzle
WHERE Puzzle_Year = 1666

--In second query session run this
BEGIN TRANSACTION
DELETE FROM PartitionPuzzle
WHERE Puzzle_Year = 1812

--Both operations succeed because each takes key locks
sp_lock

--In first query session rollback the transaction
ROLLBACK TRANSACTION

--In Second query session rollback the transaction
ROLLBACK TRANSACTION

--Add some more rows to the table

INSERT PartitionPuzzle (Puzzle_Year)
SELECT 1666
FROM Number
WHERE n <= 14900

INSERT PartitionPuzzle (Puzzle_Year)
SELECT 1812
FROM Number
WHERE n <= 14900

--Again in first query session run this
BEGIN TRANSACTION
DELETE FROM PartitionPuzzle
WHERE Puzzle_Year = 1666

--Again in second query session run this
BEGIN TRANSACTION
DELETE FROM PartitionPuzzle
WHERE Puzzle_Year = 1812

--First session is blocking the second session...
sp_who2

--...because locks have escalated from key to table
sp_lock

--Lock escalation is the process of converting many fine-grain locks into fewer coarse-
grain locks, reducing system overhead while increasing the probability of concurrency
contention.
--Repeat previous deletes

--In first query session rollback the transaction
ROLLBACK TRANSACTION

--In Second query session rollback the transaction
ROLLBACK TRANSACTION

--Now partition the table so that partition level locks will be taken instead of table
locks

--Create the partition function and partition scheme

CREATE PARTITION FUNCTION pf_PartitionPuzzle(INT) AS RANGE RIGHT FOR VALUES (1066,1812)
GO
CREATE PARTITION SCHEME ps_PartitionPuzzle AS PARTITION pf_PartitionPuzzle ALL TO
([Primary])
GO

--Alter lock escalation from the default of "table" to allow partition level locking
ALTER TABLE PartitionPuzzle SET (LOCK_ESCALATION = AUTO)
GO

--Drop the clustered index and rebuild it on the partition scheme

DROP INDEX CIX_Puzzle ON PartitionPuzzle
GO

CREATE CLUSTERED INDEX CIX_Puzzle ON PartitionPuzzle
(
 Puzzle_Year
)
ON ps_PartitionPuzzle(Puzzle_Year)
GO

--Table is now partitioned on Puzzle_Month column

--Again in first query session run this
BEGIN TRANSACTION
DELETE FROM PartitionPuzzle
WHERE Puzzle_Year = 1666

--Again in second query session run this
BEGIN TRANSACTION
DELETE FROM PartitionPuzzle
WHERE Puzzle_Year = 1812

--Still blocking! - The puzzle is why is a table lock being taken out on the clustered
index when partition level locking should be used?
sp_lock

--In first query session rollback the transaction
ROLLBACK TRANSACTION

--In Second query session rollback the transaction
ROLLBACK TRANSACTION

--Diagnostics
select * from sys.partitions where object_id=object_id('PartitionPuzzle')
--Shows index 1 (Clustered index) is partitioned, but index 2 (primary key) is not.

--Need to partition align primary key by adding the cluster key to it
ALTER TABLE PartitionPuzzle DROP CONSTRAINT PK_Puzzle
GO

ALTER TABLE PartitionPuzzle ADD CONSTRAINT PK_Puzzle PRIMARY KEY NONCLUSTERED
(
 Puzzle_ID,
 Puzzle_Year -- *** Adding this column to the primary key aligns it to partitioning

) ON ps_PartitionPuzzle(Puzzle_Year)
GO

--Now repeat previous test

--Again in first query session run this
BEGIN TRANSACTION
DELETE FROM PartitionPuzzle
WHERE Puzzle_Year = 1666

--Again in second query session run this
BEGIN TRANSACTION
DELETE FROM PartitionPuzzle
WHERE Puzzle_Year = 1812

sp_lock
sp_who2

--In first query session rollback the transaction
ROLLBACK TRANSACTION

--In Second query session rollback the transaction
ROLLBACK TRANSACTION

